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Simulated experiments

Introduction

Experimentally disambiguating models of sensory cue combination

A large number of studies claim that the brain combines sensory cues in an “optimal” fashion so as to minimize the variance of the combined 
cues estimate (Landy et al. 1995). However, alternative models of cue combination provide similar predictions and few studies compare the rela-
tive fit of candidate models. Given a typical psychophysical experiment, how likely are we to correctly infer that the brain is optimal?

Models of cue combination
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Conclusion
Unmatched cue reliabilities, low numbers of observers and correlated predictions 
from candidate models means that many existing experiments are poorly positioned 
to determine whether the brain combines sensory cues “optimally”.
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Simulated observers

For a typical psychophysical experiment in this area with a 
small number of observers, the probability of statistically dis-
tinguishing models drops off rapidly as the difference be-
tween the reliability of cues grows larger. 

Heat-maps showing predicted combined cues sigmas for (a) optimal cue combination, (b) choose minimum variance cue, and (c) probabilistic 
cue switching. Optimal cue combination is easier to distinguish from (d) probabilistic cue switching, than (e) choose minimum variance.

Existing studies often test whether observers are “optimal” in regions of the parameter space where candidate models provide very similar 
predictions for combined cue sensitivity. Open symbols: Hillis et al. (2004), closed symbols: Ernst and Banks (2002).
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We simulated observers behaving in accordance with optimal cue combination and used bootstrapped likelihood ratio tests (Kingdom and Prins 2010; 
Prins and Kingdom, 2009) to determine the probability with which the slope (inverse of the Cumulative Gaussian sigma) could be statistically distinguished 
from the slope of the less variable sensory cue (if LR Ratio p<0.05, slopes differ).

Internal cue parameters Experimental estimates One hundred simulated observers
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Forty Repititions per sample 
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The key benefit of combining cues “optimally” (Landy et al 1995) is that the combined cues estimate is more reliable than either of the individ-
ual sensory cues i.e. the sigma parameter of the Gaussian distribution representing the combined cues estimate is smaller than that of the in-
dividual cues.
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We simulated 218,700 experiments to determine the probability of distinguishing a population of optimal observers from the predictions of choosing the cue 
with the minimum variance. Each pixel shows the percentage of 100 simulated experiments in which this could be achieved.   

(1) Simulate a population of n “optimal” observers in an experiment 
using standard signal detection theory. Each observer has the same 

sigma ratio. 

(2) Fit psychometric functions to each observer’s data using a max-
mimum likelihood criteria. Determine the best �tting sigma for the 

Culmulative Gaussian.

(3) Use a one-sample t-test to determine if the n observers’ sigmas 
can be statistically distinguished from the prediciton of choosing the 

cue with minimum variance.
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Color of a pixel determined by ...

Result: Percentage of simulated experiments in which a popula-
tion of “optimal” observers can be distinguished from the predic-

tions of choosing the single cue with the minimum variance.  

Optimal Prediction
More Variable Cue
Less Variable Cue
Simulated Optimal
Simulated Minimum Variance

Models not distinguishable in 23% of indivdual observers 
Models distinguishable at a group level (t = -28.57, p = 1.29 x 10-49)
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Optimal Prediction
More Variable Cue
Less Variable Cue
Simulated Optimal
Simulated Minimum Variance

Models not distinguishable in 87% of indivdual observers 
Models distinguishable at a group level (t = -9.43, p = 1.9 x 10-15)
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